Kurtosis of von Neumann entanglement entropy

نویسندگان

چکیده

In this work, we study the statistical behavior of entanglement in quantum bipartite systems under Hilbert-Schmidt ensemble as assessed by standard measure - von Neumann entropy. Expressions first three exact cumulants entropy are known literature. The main contribution present work is formula corresponding fourth cumulant that controls tail distribution. As a key ingredient deriving result, make use newly observed unsimplifiable summation bases lead to complete cancellation. addition providing further evidence conjectured Gaussian limit entropy, obtained also provides an improved finite-size approximation

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Valence bond and von Neumann entanglement entropy in Heisenberg ladders.

We present a direct comparison of the recently proposed valence bond entanglement entropy and the von Neumann entanglement entropy on spin-1/2 Heisenberg systems using quantum Monte Carlo and density-matrix renormalization group simulations. For one-dimensional chains we show that the valence bond entropy can be either less or greater than the von Neumann entropy; hence, it cannot provide a bou...

متن کامل

Fractal Von Neumann Entropy

We consider the fractal von Neumann entropy associated with the fractal distribution function and we obtain for some universal classes h of fractons their entropies. We obtain also for each of these classes a fractal-deformed Heisenberg algebra. This one takes into account the braid group structure of these objects which live in two-dimensional multiply connected space. PACS numbers: 05.30.-d; ...

متن کامل

Von Neumann entropy and majorization

We consider the properties of the Shannon entropy for two probability distributions which stand in the relationship of majorization. Then we give a generalization of a theorem due to Uhlmann, extending it to infinite dimensional Hilbert spaces. Finally we show that for any quantum channel Φ, one has S(Φ(ρ)) = S(ρ) for all quantum states ρ if and only if there exists an isometric operator V such...

متن کامل

Perturbation theory of von Neumann Entropy

In quantum information theory, von Neumann entropy plays an important role. The entropies can be obtained analytically only for a few states. In continuous variable system, even evaluating entropy numerically is not an easy task since the dimension is infinite. We develop the perturbation theory systematically for calculating von Neumann entropy of non-degenerate systems as well as degenerate s...

متن کامل

The von Neumann entropy of networks

We normalize the combinatorial Laplacian of a graph by the degree sum, look at its eigenvalues as a probability distribution and then study its Shannon entropy. Equivalently, we represent a graph with a quantum mechanical state and study its von Neumann entropy. At the graph-theoretic level, this quantity may be interpreted as a measure of regularity; it tends to be larger in relation to the nu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A

سال: 2021

ISSN: ['1751-8113', '1751-8121']

DOI: https://doi.org/10.1088/1751-8121/ac367c